Loading...

Glossary term: 自转

Description: 自转是物体绕一条假想轴(称为自转轴)的运动。当物体自转时,其各个部分与自转轴保持完全相同的距离。一般来说,恒星(包括太阳)、行星、卫星或小行星都会围绕一个固定的轴旋转。地球围绕地轴旋转,地轴是穿过地球南北两极的假想轴。地球表面的每个观察者都能看到夜空景象的变化,星星不断从东边地平线升起,沿着西边地平线落下,这就是地球自转的结果。太阳一天中的东升西落也是地球自转的结果。

Related Terms:



See this term in other languages

Term and definition status: The original definition of this term in English have been approved by a research astronomer and a teacher
The translation of this term and its definition is still awaiting approval

The OAE Multilingual Glossary is a project of the IAU Office of Astronomy for Education (OAE) in collaboration with the IAU Office of Astronomy Outreach (OAO). The terms and definitions were chosen, written and reviewed by a collective effort from the OAE, the OAE Centers and Nodes, the OAE National Astronomy Education Coordinators (NAECs) and other volunteers. You can find a full list of credits here. All glossary terms and their definitions are released under a Creative Commons CC BY-4.0 license and should be credited to "IAU OAE".

Related Media


北斗七星逐渐向左侧地平线下方移动,而右侧则有一颗彗星在天空中升起。

北斗七星和新智彗星 C2020 F3

Caption: 这段延时摄影记录了2020年7月拍摄的三帧画面中标志性的北斗七星的轨迹。影像在意大利的三个地点拍摄:拉瓦雷多三峰(Tre Cime di Lavaredo)奥隆佐迪卡多雷、里特山(Monte Rite)奇比亚纳迪卡多雷,以及拉佐牧场(Casera Razzo)维戈迪卡多雷。这场视觉奥德赛展示了北斗七星的迷人轨迹,并在夜空中绘制出天体画卷。它不仅描绘了这个著名星群的轨迹,还捕捉到2020年7月照亮天空的罕见新智彗星 C/2020 F3 这一非凡的天文事件,为我们的夜空增添了光彩。
Credit: 乔尔贾·霍弗/国际天文学联合会教育办公室 (CC BY 4.0)

License: CC-BY-4.0 Creative Commons 署名 4.0 国际 (CC BY 4.0) icons

Related Activities


Why Do We Have Day and Night?

Why Do We Have Day and Night?

astroEDU educational activity (links to astroEDU website)
Description: Explore day and night of Earth.

License: CC-BY-4.0 Creative Commons 署名 4.0 国际 (CC BY 4.0) icons

Tags: Tilt
Age Ranges: 6-8 , 8-10 , 10-12
Education Level: Primary , Secondary
Areas of Learning: Modelling , Structured-inquiry learning , Social Research
Costs: Low Cost
Duration: 1 hour 30 mins
Group Size: Group
Skills: Asking questions , Communicating information

Day and Night in the World

Day and Night in the World

astroEDU educational activity (links to astroEDU website)
Description: Compare diurnal and nocturnal animals and experiment with day and night.

License: CC-BY-4.0 Creative Commons 署名 4.0 国际 (CC BY 4.0) icons

Tags: Life , Model , Animals , Day and night
Age Ranges: 6-8 , 8-10
Education Level: Primary
Areas of Learning: Interactive Lecture , Modelling , Social Research
Costs: Low Cost
Duration: 1 hour
Group Size: Group
Skills: Asking questions , Constructing explanations , Developing and using models , Planning and carrying out investigations

Seasons Around the World

Seasons Around the World

astroEDU educational activity (links to astroEDU website)
Description: Demonstrate the seasons on Earth using a model.

License: CC-BY-4.0 Creative Commons 署名 4.0 国际 (CC BY 4.0) icons

Tags: Hands-on , Model
Age Ranges: 6-8 , 8-10 , 10-12
Education Level: Middle School , Primary
Areas of Learning: Modelling , Social Research
Costs: Medium Cost
Duration: 45 mins
Group Size: Group
Skills: Analysing and interpreting data , Asking questions , Constructing explanations , Developing and using models , Planning and carrying out investigations

Measure the Sun's Rotation Period

Measure the Sun's Rotation Period

astroEDU educational activity (links to astroEDU website)
Description: Find out the Sun’s rotation period, applying the simple equation of average speed to a real astronomical case.

License: CC-BY-4.0 Creative Commons 署名 4.0 国际 (CC BY 4.0) icons

Tags: Hands-on , History , Experiment , Galileo , average speed
Age Ranges: 16-19
Education Level: Secondary
Areas of Learning: Social Research
Costs: Low Cost
Duration: 1 hour 30 mins
Group Size: Group
Skills: Analysing and interpreting data , Engaging in argument from evidence , Planning and carrying out investigations , Using mathematics and computational thinking

Is the Sun rotating? Follow the sunspots!

Is the Sun rotating? Follow the sunspots!

astroEDU educational activity (links to astroEDU website)
Description: Like a "modern" Galileo, use true astronomical satellite observations to discover if the Sun (and other celestial objects) are rotating!

License: CC-BY-4.0 Creative Commons 署名 4.0 国际 (CC BY 4.0) icons

Tags: Hands-on , History , Experiment , Galileo
Age Ranges: 12-14 , 14-16 , 16-19
Education Level: Middle School , Secondary
Areas of Learning: Social Research
Costs: Low Cost
Duration: 1 hour
Group Size: Group
Skills: Analysing and interpreting data , Planning and carrying out investigations