Loading...

Glossary term: Júpiter

Description: Júpiter es el planeta más grande del Sistema Solar y el quinto en orden desde el Sol. Es un gigante gaseoso con un radio de 71,300 kilómetros (km), unas 11 veces el radio de la Tierra. La masa de Júpiter (318 veces la masa de la Tierra) es mayor que la de todos los demás planetas y cuerpos menores del Sistema Solar juntos.

Su distancia típica al Sol es de 778 millones de km, unas cinco unidades astronómicas (distancias Tierra-Sol), tardando algo menos de 12 años en completar una órbita. Hasta 2023, los astrónomos habían detectado más de 90 lunas o satélites naturales orbitando Júpiter.

Es visible a simple vista. Su nombre en inglés deriva del rey romano de los dioses. Observado con un pequeño telescopio se aprecian cinturones de nubes de distintos colores y una gigantesca región de tormenta circular roja (la llamada Gran Mancha Roja). En las últimas décadas se han enviado algunas sondas espaciales a Júpiter, y en 2016 la nave espacial Juno de la NASA comenzó a explorar Júpiter y sus lunas con mucho más detalle.

Related Terms:



See this term in other languages

Term and definition status: The original definition of this term in English have been approved by a research astronomer and a teacher
The translation of this term and its definition is still awaiting approval

The OAE Multilingual Glossary is a project of the IAU Office of Astronomy for Education (OAE) in collaboration with the IAU Office of Astronomy Outreach (OAO). The terms and definitions were chosen, written and reviewed by a collective effort from the OAE, the OAE Centers and Nodes, the OAE National Astronomy Education Coordinators (NAECs) and other volunteers. You can find a full list of credits here. All glossary terms and their definitions are released under a Creative Commons CC BY-4.0 license and should be credited to "IAU OAE".

If you notice a factual or translation error in this glossary term or definition then please get in touch.

Related Media


The planet Jupiter with the two of the four Galilean moons (visible as bright dots) orbiting it.

Jupiter's Rotation, by Vishal Sharma, India

Caption: Third place in the 2021 IAU OAE Astrophotography Contest, category Galilean moons: Jupiter’s Rotation, by Vishal Sharma, India. This time-lapse beautifully shows the rotation of Jupiter and the passage of two Galilean moons on the right side of the frame. Jupiter completes one rotation in just under 10 hours and we see as the Great Red Spot makes its way from left to right. The two moons travel a noticeable fraction of their orbit in this short time. This image was taken in 2020 in the North of India.
Credit: Vishal Sharma/IAU OAE

License: CC-BY-4.0 Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0) icons


The planet Jupiter, seen here as a bright disk, is orbited by the four Galilean moons, seen here as bright dots

Jupiter Moons Movie2, by Nicolas Hurez, Paul-Antoine Matrangolo, and Carl Pennypacker, United States of America

Caption: Second place in the 2021 IAU OAE Astrophotography Contest, category Galilean moons. This sequence shows the orbit of the four Galilean moons around the planet Jupiter. Almost two entire orbits of the innermost moon, Io, can be seen, with the other moons (Europa and Ganymede, but in particular Callisto) being further away, orbiting noticeably slower. The images were obtained in 2018 with the Las Cumbres Global Observatory at different locations on Earth, allowing a continuous sequence of images over approximately half a week without gaps during the day. With clear skies and over the course of several nights, the motion of the Galilean moons can also be observed with binoculars (ideally steady your elbows on a surface).
Credit: Nicolas Hurez, Paul-Antoine Matrangolo and Carl Pennypacker/IAU OAE

License: CC-BY-4.0 Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0) icons


Jupiter with coloured horizontal bands of clouds. The shadow of the moon Io is seen as a dark circle in the top left

Jupiter, Io and its shadow, by Ralf Burkart, Germany

Caption: First place in the 2021 IAU OAE Astrophotography Contest, category Galilean moons. This time-lapse of Jupiter taken in 2017 from Germany beautifully illustrates the transit of one of the Galilean moons, Io, in front of Jupiter. As this is simply a moon casting a shadow on a planet it is equivalent to a lunar eclipse on Earth observed from further away. While the shadow of the moon is clearly visible from the beginning, it might be difficult to spot the moon itself against the background of the beautiful atmospheric bands of Jupiter the first time the video is seen. Watching it repeatedly allows appreciating the rapid motion and rotation in this fantastic observation.
Credit: Ralf Burkart/IAU OAE

License: CC-BY-4.0 Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0) icons


The planet Jupiter with horizontal cloud ribbons and the great red spot

Jupiter

Caption: This full disk view of Jupiter was obtained on 21 April 2014 with Hubble's Wide Field Camera 3 (WFC3). It shows the prominent great red spot, a gigantic cyclone. Cloud ribbons cover the surface, whose colours stem from gases like ammonia and other chemical compounds.
Credit: NASA, ESA, and A. Simon (Goddard Space Flight Center) credit link

License: CC-BY-4.0 Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0) icons


The Milky Way rises from the horizon over a landscape with trees, water and the distant glow of city lights

Flowing Night Sky

Caption: Honourable mention in the 2022 IAU OAE Astrophotography Contest, category Time lapses of celestial patterns.   This time-lapse was shot from Slovakia in August 2020. By fixing the relative movement of the sky to Earth's rotation in some of the frames, we can experience a different perspective as a viewer. The Milky Way, our home galaxy, is visible throughout the whole video. The bright objects near the Milky Way are Jupiter and Saturn, close together, Jupiter being the brighter one. This video also shows the interaction of amateur astronomers observing the Perseids meteor shower with their telescopes pointed towards the sky. An unfortunate aspect of the art of astronomical observing, clouds can suddenly cover the whole sky. The fog occurs mostly because of the higher humidity after the rain. Most of the light trails in the sky are made by satellites, but some of them, appearing just very briefly and not very noticeably, are meteors, as the video was shot around the peak of Perseids meteor shower.
Credit: Robert Barsa/IAU OAE

License: CC-BY-4.0 Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0) icons