Loading...

Glossary term: Constellation

Description: En termes techniques modernes, une constellation est un segment polygonal de la sphère céleste. L'Union astronomique internationale a divisé l'ensemble de la sphère céleste en 88 régions - les constellations. Cette division est basée sur les constellations utilisées dans la Grèce antique et sur des ajouts plus récents, en particulier dans l'hémisphère sud. Chacune des 88 constellations occupe une certaine partie du ciel et, par conséquent, chaque corps céleste, des étoiles aux galaxies en passant par les nébuleuses, peut être associé à une constellation. Le Zodiaque correspond aux 13 constellations qui se superposent à l'écliptique (le chemin annuel tracé par le Soleil à travers la sphère céleste). Ces 13 constellations sont : Ophiuchus, Sagittaire, Capricorne, Verseau, Poissons, Bélier, Taureau, Gémeaux, Cancer, Lion, Vierge, Balance et Scorpion.

Les constellations contiennent des groupements d'étoiles (astérismes) qui suggèrent un motif vu de la Terre. Ces motifs sont décrits de manière imaginative comme représentant des êtres humains, des animaux ou d'autres objets reconnaissables.

Related Terms:



See this term in other languages

Term and definition status: The original definition of this term in English have been approved by a research astronomer and a teacher
The translation of this term and its definition is still awaiting approval

The OAE Multilingual Glossary is a project of the IAU Office of Astronomy for Education (OAE) in collaboration with the IAU Office of Astronomy Outreach (OAO). The terms and definitions were chosen, written and reviewed by a collective effort from the OAE, the OAE Centers and Nodes, the OAE National Astronomy Education Coordinators (NAECs) and other volunteers. You can find a full list of credits here. All glossary terms and their definitions are released under a Creative Commons CC BY-4.0 license and should be credited to "IAU OAE".

If you notice a factual or translation error in this glossary term or definition then please get in touch.

Related Media


The bright streak of a meteor is reflected in a body of water. The Large Magellenic Cloud is in the top left as a fuzzy line

Between Two Skies

Caption: Honourable mention in the 2022 IAU OAE Astrophotography Contest, category Still images of celestial patterns.   Taken from Narrabri, Australia, in April 2014, this photograph shows a meteor next to the Large Magellanic Cloud and the reflection of all this in the water. The Magellanic Clouds are named after the Portuguese explorer Ferdinand Magellan, who made the first maps of the southern part of South America in the early 16th century but did not survive his expedition voyage. His shipmates called the two nebulae after him, and it was only in the 20th century that astronomy research discovered that they are in fact dwarf galaxies accompanying our own. In the 18th century, the French mathematician J-N. Lacaille, who lived in South Africa for some years in order to draw maps of the sky and the land, invented some new constellations. He measured the positions of some faint stars and listed them in his star catalogue, but did not try to overlay beautiful drawings of real-world objects on the star patterns, so he could name them however he wanted. He was based in the trade station that is now the city of Cape Town and, from this bay, Table Mountain is visible. Lacaille learned from the navigators that they used the clouds around this mountain to predict whether or not the wind would blow in the correct direction and allow for sailing. Normally, there is a huge white cloud at the top of Table Mountain, so Lacaille considered the larger one of the two dwarf galaxies not a “Magellanic Cloud”, but the cloud at Table Mountain. Consequently, he invented the constellation “Mensa”, Table Mountain, in the small area of faint stars directly attached to this dwarf galaxy.
Credit: Fabrizio Melandri/IAU OAE

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


In a field of countless stars dotted by clouds and reflected in water, the three stars of Orion’s belt poke above the horizon

Constellations from the World

Caption: Third place in the 2022 IAU OAE Astrophotography Contest, category Time lapses of celestial patterns.   This video tries to cover a huge variety of phenomena in the night sky from different locations — Iceland and China — and is designed like a theatre play, starring mother nature herself. It starts with a blue twilight sky that dims and unveils the starry night sky on the stage with terrestrial clouds on a beautiful landscape. The impressive parts of the southern Milky Way between Scorpius and Crux, with the pointer stars Alpha and Beta Centaurus, are shown passing by majestically. The terrestrial clouds blur the stars and allow us to recognise their colours even more clearly. The first act presents the starry sky in human culture. One scene shows the Pleiades rising over the top of a hill, while a human moves hastily with a flashlight below. At the very moment that the Pleiades rises behind the hill, the beam of the flashlight hits the camera. There is some humour in this remarkable scene referencing the human relationship to the rise of the Pleiades in cultural history. The next scene shows The Big Dipper, Ursa Major, as a typical northern constellation, with an arch of aurora below it. The aurora evolves and moves but does not change much fundamentally. In northern human cultures, aurorae were often interpreted as the ghosts of ancestors, but this play does not spend any time on human beliefs, instead moving the view southwards in the subsequent scenes. First we see some stars rising shortly before sunrise. The lightcone of Zodiacal light appears in Gemini/Taurus and the horizon gets brighter. In the next scene, at about 1 minute and 13 seconds, we see Orion setting over water, so that the water surface mirrors the celestial scene. Some clouds crossing the image prove that the videos were really taken on our beautiful planet, and, since Orion’s shoulder and foot are seen to set almost simultaneously, this sequence must have been captured almost at the equator. In this area, the bright stars of Orion look like a huge butterfly, with Orion’s Belt forming the body, and the quadrilateral of four bright stars interpreted as the wings. As in a real theatre, we now see a curtain before the next act of the heavenly play, an aurora curtain. The next act presents several bright stars in original scenes: the Chinese asterisms of The Tail (of the Azure Dragon), the Winnowing Basket and the Southern Dipper, which are seen in the modern constellations Scorpius and Sagittarius. The striking shape of Corona Borealis that has been recognised as an asterism in many cultures all over the globe, is also shown, as are some planets, the stars Vega and Deneb with adjacent areas, Altair, the Milky Way, and the characteristic W shape of Cassiopeia that has also been an asterism for many cultures on Earth. The outro presents two more scenes with a smooth and silent night sky.
Credit: Stephanie Ye Ziyi/IAU OAE

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


Over a cluster of small telescope domes the Milky Way juts upward from the horizon. Two fuzzy blobs are on the right

Chilean Nights

Caption: Honourable mention in the 2022 IAU OAE Astrophotography Contest, category Time lapses of celestial patterns.   Shot in December 2020, this time-lapse shows the sky from San Pedro de Atacama, Chile, in the southern hemisphere. Right in the first frame we can see our home galaxy, the Milky Way, as well as both the Large and Small Magellanic clouds, two satellite galaxies orbiting the Milky Way. In the bottom of the image the bright stars Rigil Kentaurus and Hadar (also known as Alpha and Beta Centauri) are visible, both in the constellation Centaurus. Just above, we can also see the small constellation Crux, visible from the northern tropical circles southwards. It is important for navigation purposes because its longer axis indicates the direction of the celestial south pole. The bright whitish star in the top of the image and to the right of the Galaxy is Canopus, one of the brightest stars in the night sky, located in the constellation Carina. Canopus is the second brightest star in the sky, while Rigil Kentaurus is the third brightest. In some of the next frames, Orion, the great hunter, appears clearly with its bright stars and its characteristic asterism, the belt, composed of three aligned bright stars. Since this video was taken from the southern hemisphere, the Greek hero from the northern hemisphere seems to be performing a headstand. We can also see the planets Jupiter and Saturn in a close conjunction, even finding themselves in the significant beam of Zodiacal light setting down below the horizon. There are also a few meteors blinking in some of the frames, one of them with a long-lasting and developing trail. The very bright object rising from behind the volcanoes of the Andes, creating spectacular shadows and crepuscular rays, is the Moon. In the last frame we see the Moon next to Saturn and Jupiter.
Credit: Robert Barsa/IAU OAE

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


Above a volcano, a bow-tie-shaped Orion is peppered with bright sweeps of nebular gas

Orion Rises Over Mount Etna

Caption: Honourable mention in the 2022 IAU OAE Astrophotography Contest, category Still images of celestial patterns.   Taken in February 2021, this image is a composite of an astronomy picture in the background and Mount Etna, the famous volcano in Sicily, Italy, in the foreground. Prominently, we see the red hydrogen clouds in space in the area of Orion. Barnard’s Loop is the gigantic bow with the Great Orion Nebula and the Horsehead Nebula in its centre. The deeper-coloured Horse Head is below the southernmost stars in Orion’s Belt, which is the line of white stars above the red nebula. Clearly visible is also the division between the Small and the Great Orion Nebula, the circular and the trapezium-shaped structure in light pink within which one of the nearest star-forming regions is located. The nebula is only a bit more than a thousand light-years away. In the middle-left, close to the edge of the image, the small red structure is the Monkey Head Nebula still in the constellation Orion. It hosts a young star cluster and the deep red colour of this hydrogen cloud indicates its potential to build new stars in the future if the material is compressed again. All these reddish objects are strongly processed in this image, as they are not visible to the unaided eye. Still, this image provides an interesting feature; the red supergiant star Betelgeuse lies in the middle of the image and it seems to be directly above the active volcano Mount Etna. At the foot of this volcano is an ancient settlement, the city of Catania. We consider both Betelgeuse and Mount Etna somehow dangerous — but which of them will erupt first? Ok, we know that Etna occasionally erupts. Normally it exhibits only small eruptions, but the bigger ones happen every few centuries. We also know that Betelgeuse as a giant star will become a supernova in the future. Astronomers call the timescale for the potential supernova short, implying that it will be only 10 000 or maybe 100 000 years until this star explodes. This is “soon” for astronomers, meaning that on Earth, two to four precession cycles will pass by (with the consequence that the Sahara will turn green and dry again two to four times), continental drift will take Africa further north and cause the Alps to grow in height, the Niagara falls in America will wash the rock completely away and only after all this (and much more) happening on Earth will Betelgeuse explode as a supernova. Mount Etna is much more dangerous for the people in Sicily, and Catania in particular, because it will erupt sooner.
Credit: Dario Giannobile/IAU OAE

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


A dark sky over a dry desert landscape. The brightest star in the image is rising on the lower left

The Culmination of Canopus

Caption: Honourable mention in the 2022 IAU OAE Astrophotography Contest, category Time lapses of celestial patterns.   This time-lapse video was shot in January 2018 from the Joshua Tree National Park, USA, and follows the path of Canopus, the second-brightest star in the night sky, as it moves from left to right, almost touching the horizon. The landscape is illuminated by the Moon.  Canopus is associated with the rudder of the ancient Argo constellation, the Ship, nowadays split into the three modern constellations Vela, Puppis and Carina, the last of which contains Canopus. Owing to its brightness, Canopus has caught the attention of several cultures around the world throughout history. For instance, the Navajo people of North America named the star as the Coyote, and say that the coyote took part in the creation of the Universe. The Kalapalo people of Brazil associated Canopus with a duck, with other bright stars making up the body parts of the animal. The appearance of Canopus in the sky indicates the coming of the rainy season.
Credit: Fabrizio Melandri/IAU OAE

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons

Related Diagrams


Les étoiles brillantes d'Andromède forment un Y. Pégase en bas à droite. Au centre se trouve M31, marquée d'une ellipse rouge.

Carte de la constellation d'Andromède

Caption: La constellation d'Andromède montrant ses étoiles brillantes et les constellations environnantes. Andromède est entourée (dans le sens des aiguilles d'une montre à partir du haut) de Cassiopée, du Lézard, de Pégase, des Poissons, du Bélier, du Triangle et de Persée. L'étoile la plus brillante d'Andromède (Alpheratz) se trouve dans la partie inférieure de la constellation. Avec trois étoiles de Pégase, elle forme l'astérisme connu sous le nom de "Grand carré de Pégase". Les deux autres étoiles brillantes de la constellation (Mirach et Almach) forment une ligne qui s'étend au nord-est d'Alpheratz. Andromède est une constellation septentrionale et est surtout visible le soir, à l'automne dans l'hémisphère nord. Elle est visible depuis tout l'hémisphère nord et la plupart des régions tempérées de l'hémisphère sud, mais n'est pas visible depuis les régions antarctiques et subantarctiques. L'objet le plus célèbre d'Andromède, la galaxie d'Andromède, est marqué ici d'une ellipse rouge et de son numéro de catalogue Messier M31. Le cercle jaune à gauche indique la position de l'amas ouvert NGC 752 et le cercle vert à droite indique NGC 7662 (la nébuleuse de la boule de neige bleue), une nébuleuse planétaire. L'axe des y de ce diagramme est en degrés de déclinaison avec le nord en haut et l'axe des x est en heures d'ascension droite avec l'est à gauche. La taille des étoiles marquées ici correspond à la magnitude apparente de l'étoile, une mesure de sa luminosité apparente. Les points les plus gros représentent les étoiles les plus brillantes. Les lettres grecques indiquent les étoiles les plus brillantes de la constellation. Elles sont classées par ordre de luminosité, l'étoile la plus brillante étant étiquetée alpha, la deuxième plus brillante bêta, etc., bien que cet ordre ne soit pas toujours respecté à la lettre. Les lignes pointillées marquent les délimitations des constellations selon l'UAI et les lignes vertes pleines marquent l'une des formes couramment utilisées pour représenter les figures des constellations. Ni les limites des constellations, ni les lignes reliant les étoiles n'apparaissent sur le ciel.
Credit: Adapté par le Bureau de l'astronomie pour l'éducation de l'AIU à partir de l'original de l'AIU/Sky & Telescope

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


The four bright stars of Crux form a kite shape with the long axis pointing vertically

Crux Constellation Map

Caption: The constellation Crux (commonly known as the Southern Cross or Crux Australis) showing its bright stars and surrounding constellations. The Southern Cross is surrounding by (going clockwise from the top) Centaurus, Carina and Musca. The brightest star is alpha Crucis which appears at the bottom of the constellation's famous kite shape. The Southern Cross is visible from southern and equatorial regions of the world. In more southerly parts of the world it is circumpolar so is always above the horizon. In other parts of the southern hemisphere and in equatorial regions it is most visible in the evenings in the southern hemisphere autumn. The yellow circles show the locations of two open clusters, NGC 4755 (known as the Jewel Box) and NGC 4609. The line joining gamma and alpha Crucis (the third and first brightest stars in the Southern Cross) points in the approximate direction of the South Celestial Pole. This has led to the Southern Cross playing an important role in celestial navigation, allowing navigators from different astronomical traditions to find their bearings. The y-axis of this diagram is in degrees of declination with north as up and the x-axis is in hours of right ascension with east to the left. The sizes of the stars marked here relate to the star's apparent magnitude, a measure of its apparent brightness. The larger dots represent brighter stars. The Greek letters mark the brightest stars in the constellation. These are ranked by brightness with the brightest star being labeled alpha, the second brightest beta, etc., although this ordering is not always followed exactly. The dotted boundary lines mark the IAU's boundaries of the constellations and the solid green lines mark one of the common forms used to represent the figures of the constellations. Neither the constellation boundaries, nor the lines joining the stars appear on the sky.
Credit: Adapted by the IAU Office of Astronomy for Education from the original by IAU/Sky & Telescope.

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


Orion appears as an hourglass-shaped pattern with two strings of stars extending northeast and northwest

Orion Constellation Map

Caption: The constellation Orion along with its bright stars and surrounding constellations. Orion is surrounded by (going clockwise from the top) Taurus, Eridanus, Lepus, Monoceros and Gemini. Orion’s brightest stars Betelgeuse and Rigel appear at the northern (upper on this diagram) and southern (lower) end of the constellation respectively with the famous three star “belt” in the middle. Orion spans the celestial equator and is thus visible at some time in the year from all of planet Earth. In the most arctic or antarctic regions of the world, some parts of the constellation may not be visible. Orion is most visible in the evenings in the northern hemisphere winter and southern hemisphere summer. The blue line above Orion marks the ecliptic, the path the Sun appears to travel across the sky over the course of a year. The Sun never passes through Orion, but one can occasionally find the other planets of the Solar System and the Moon in Orion. Just south of Orion’s belt lie two Messier objects M42 (the Orion nebula) and M43, marked by green squares. These nebulae along with M78 (here the green square to the left of the belt) are part of the huge Orion Molecular Cloud Complex. This covers most of the constellation and includes regions where these molecular clouds are collapsing to form young starts. The y-axis of this diagram is in degrees of declination with north as up and the x-axis is in hours of right ascension with east to the left. The sizes of the stars marked here relate to the star's apparent magnitude, a measure of its apparent brightness. The larger dots represent brighter stars. The Greek letters mark the brightest stars in the constellation. These are ranked by brightness with the brightest star being labeled alpha, the second brightest beta, etc., although this ordering is not always followed exactly. The circle around Betelgeuse indicates that it is a variable star. The dotted boundary lines mark the IAU's boundaries of the constellations and the solid green lines mark one of the common forms used to represent the figures of the constellations. Neither the constellation boundaries, nor the line marking the ecliptic, nor the lines joining the stars appear on the sky.
Credit: Adapted by the IAU Office of Astronomy for Education from the original by IAU/Sky & Telescope

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


Libra appears as a triangle pointing north (up) with two lines hanging down. It is bisected by the ecliptic running ESE-WNW

Libra Constellation Map

Caption: The constellation Libra along with its bright stars and surrounding constellations. Libra is surrounded by (going clockwise from the top) Serpens Caput, Virgo, Hydra, Centaurus, Lupus, Scorpius and Ophiuchus. Libra lies on the ecliptic (shown here as a blue line), this is the path the Sun appears to take across the sky over the course of a year. The Sun is in Libra from late October to late November. The other planets of the Solar System can often be found in Libra. Libra lies just south of the celestial equator and is thus visible at some time in all but the most arctic regions. Libra is most visible in the evenings in the northern hemisphere late spring/early summer and southern hemisphere late autumn/early winter. The y-axis of this diagram is in degrees of declination with north as up and the x-axis is in hours of right ascension with east to the left. The sizes of the stars marked here relate to the star's apparent magnitude, a measure of its apparent brightness. The larger dots represent brighter stars. The Greek letters mark the brightest stars in the constellation. These are ranked by brightness with the brightest star being labeled alpha, the second brightest beta, etc., although this ordering is not always followed exactly. The dotted boundary lines mark the IAU's boundaries of the constellations and the solid green lines mark one of the common forms used to represent the figures of the constellations. Neither the constellation boundaries, nor the line marking the ecliptic, nor the lines joining the stars appear on the sky.
Credit: Adapted by the IAU Office of Astronomy for Education from the original by IAU/Sky & Telescope

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


Scorpius appears as a letter T joined to a letter J. The ecliptic runs ESE to WNW and clips one arm of the T

Scorpius Constellation Map

Caption: The constellation Scorpius (often commonly called Scorpio) along with its bright stars and surrounding constellations. Scorpius is surrounded by (going clockwise from the top) Ophiuchus, Serpens Caput, Libra, Lupus, Norma, Ara, Corona Australis and Sagittarius. Scorpius’s brightest star Antares appears in the heart of the constellation with the famous tail of Scoprius in the south-east (lower left). Scorpius lies on the ecliptic (shown here as a blue line), this is the path the Sun appears to take across the sky over the course of a year. The Sun only spends a short amount of time in late November in Scorpius. The other planets of the Solar System can often be found in Scorpius. Scorpius lies south of the celestial equator. The whole constellation is not visible from the most arctic regions of the world with parts of Scorpius obscured for observers in northern parts of Asia, Europe and North America. Scorpius is most visible in the evenings in the northern hemisphere summer and southern hemisphere winter. The yellow circles mark the positions of the open clusters M6, M7 & NGC 6231 while the yellow circles with plus signs superimposed on them mark the globular clusters M4 and M80. The y-axis of this diagram is in degrees of declination with north as up and the x-axis is in hours of right ascension with east to the left. The sizes of the stars marked here relate to the star's apparent magnitude, a measure of its apparent brightness. The larger dots represent brighter stars. The Greek letters mark the brightest stars in the constellation. These are ranked by brightness with the brightest star being labeled alpha, the second brightest beta, etc., although this ordering is not always followed exactly. The circle around Antares indicates that it is a variable star. The dotted boundary lines mark the IAU's boundaries of the constellations and the solid green lines mark one of the common forms used to represent the figures of the constellations. The blue line marks the ecliptic, the path the Sun appears to travel across the sky over the course of one year. Neither the constellation boundaries, nor the line marking the ecliptic, nor the lines joining the stars appear on the sky.
Credit: Adapted by the IAU Office of Astronomy for Education from the original by IAU/Sky & Telescope

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons

Related Activities


What is a Constellation?

What is a Constellation?

astroEDU educational activity (links to astroEDU website)
Description: Investigate three dimensional objects and perspective using constellations

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons
Tags: Hands-on
Age Ranges: 6-8 , 8-10
Education Level: Primary
Areas of Learning: Modelling , Social Research
Costs: Medium Cost
Duration: 1 hour 30 mins
Group Size: Group
Skills: Analysing and interpreting data , Asking questions , Constructing explanations , Developing and using models


Make a Star Lantern

Make a Star Lantern

astroEDU educational activity (links to astroEDU website)
Description: Learn about constellations by building a star lantern.

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons
Age Ranges: 6-8 , 8-10
Education Level: Primary
Areas of Learning: Fine Art focussed , Interactive Lecture
Costs: High Cost
Duration: 1 hour 30 mins
Group Size: Group
Skills: Asking questions , Communicating information , Developing and using models


Moving constellations

Moving constellations

astroEDU educational activity (links to astroEDU website)
Description: Let's learn how stars in constellations move through time using real astronomical images.

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons
Tags: Software , Data analysis , stellarium , gaia , hipparcos , ursa major
Age Ranges: 10-12 , 12-14 , 14-16 , 16-19 , 19+
Education Level: Middle School , Secondary
Areas of Learning: Guided-discovery learning , Observation based , Technology-based
Costs: Free
Duration: 3 hours
Skills: Analysing and interpreting data , Asking questions , Communicating information , Developing and using models , Engaging in argument from evidence


Orion constellation in 3D

Orion constellation in 3D

astroEDU educational activity (links to astroEDU website)
Description: Let's make a simple model of the Orion constellation

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons
Age Ranges: 8-10 , 10-12
Education Level: Primary
Areas of Learning: Guided-discovery learning , Modelling , Social Research
Costs: Low Cost
Duration: 2 hours
Group Size: Group
Skills: Analysing and interpreting data , Asking questions , Developing and using models