Loading...

Glossary term: Type spectral

Also known as Classe spectrale

Description: Les étoiles sont classées en types spectraux en fonction de l'apparence des caractéristiques de leur spectre.

Pour la plupart des étoiles, le type spectral est basé principalement sur la température de la surface stellaire et suit une séquence : O, B, A, F, G, K et M, du plus chaud au plus froid. Cette séquence a récemment été étendue aux types plus froids L, T et Y. Ces trois types représentent principalement des naines brunes, mais certains objets de type spectral L sont des étoiles plutôt que des naines brunes.

Il existe également des lettres pour classer des classes spéciales d'étoiles. Les étoiles au carbone sont des étoiles dont le spectre est fortement marqué par des molécules contenant du carbone. Elles sont classées dans le type C. Les étoiles de type S sont intermédiaires entre les types K ou M et C, dans la mesure où les abondances d'oxygène et de carbone à la surface sont presque égales. Les naines blanches sont divisées en une série de types différents en fonction des caractéristiques de leur spectre ; tous ces types commencent par la lettre D (DA, DB, etc.). Les étoiles chaudes et massives avec de larges raies d'émission ont une série de types commençant par W (WN, WC, WO).

La notation actuelle est un héritage de la première tentative de classification moderne, entreprise à l'Observatoire du Collège de Harvard. Les classes, désignées à l'origine par ordre alphabétique de A à Q, ont ensuite été réorganisées en fonction de la température, ce qui a permis d'obtenir les principaux types encore utilisés aujourd'hui. Les principales classes spectrales sont subdivisées par les chiffres de zéro à neuf. Le Soleil est de type spectral G2. Des lettres supplémentaires font référence à des caractéristiques spéciales (telles que e pour les étoiles présentant des raies d'émission brillantes), et la classe de luminosité, désignée par des chiffres romains, peut également être spécifiée.

Related Terms:



See this term in other languages

Term and definition status: The original definition of this term in English have been approved by a research astronomer and a teacher
The translation of this term and its definition is still awaiting approval

The OAE Multilingual Glossary is a project of the IAU Office of Astronomy for Education (OAE) in collaboration with the IAU Office of Astronomy Outreach (OAO). The terms and definitions were chosen, written and reviewed by a collective effort from the OAE, the OAE Centers and Nodes, the OAE National Astronomy Education Coordinators (NAECs) and other volunteers. You can find a full list of credits here. All glossary terms and their definitions are released under a Creative Commons CC BY-4.0 license and should be credited to "IAU OAE".

Related Diagrams


Sept lignes. Le pic de chaque ligne passe des courtes longueurs d'onde pour la ligne supérieure aux grandes longueurs d'onde pour la ligne inférieure.

Types spectraux stellaires

Caption: Les spectres de sept étoiles classés par type spectral, du plus chaud (type O) en haut au plus froid (type M en bas). L'axe des x indique la longueur d'onde de la lumière et l'axe des y est une mesure du flux de lumière reçu à cette longueur d'onde. Chaque spectre est normalisé (le flux à chaque longueur d'onde est divisé par le flux maximal dans ce spectre) et les spectres sont ensuite décalés les uns par rapport aux autres le long de l'axe des y pour faciliter la visualisation du graphique. La couleur des lignes entre 400 nm et 700 nm correspond approximativement à la couleur de la lumière de cette longueur d'onde perçue par l'œil humain. En dessous de 400 nm et au-dessus de 700 nm, où l'œil humain ne voit que peu ou pas de lumière, les lignes sont colorées respectivement en bleu et en rouge. Les étoiles les plus chaudes ont un flux plus important à l'extrémité bleue du spectre et les étoiles les plus froides ont un flux plus important à l'extrémité rouge. Toutefois, la quantité totale de flux émis par une étoile dépend de sa taille et de sa température. Ainsi, une étoile chaude émettra plus de lumière rouge qu'une étoile froide de même taille, même si l'étoile froide émet presque toute sa lumière dans le rouge, mais cela n'est pas visible sur ce graphique en raison de la normalisation mentionnée ci-dessus. Les gouttes étroites et nettes dans les spectres sont des raies d'absorption causées par les atomes et les ions dans l'atmosphère des étoiles. L'intensité d'une raie spectrale dépend de la température de l'atmosphère de l'étoile. Prenons par exemple la raie de l'hydrogène à 656,5 nm. Toutes les étoiles de ce graphique sont principalement composées d'hydrogène, mais la raie de l'hydrogène à 656,5 nm est faible pour les étoiles les plus chaudes et les plus froides, mais plus forte pour les types spectraux A et F. Cela s'explique par le fait que l'hydrogène absorbe plus de lumière à 656,5 nm aux températures de l'atmosphère des étoiles A et F que dans les étoiles les plus chaudes ou les plus froides. L'étoile la plus froide, l'étoile de type M, présente de larges bandes d'absorption dans ses spectres. Cela s'explique par le fait que cette étoile est suffisamment froide pour que son atmosphère contienne des composés tels que l'oxyde de titane. Ces composés, souvent appelés molécules en astronomie, produisent des caractéristiques d'absorption spectrale plus larges que les atomes ou les ions.
Credit: IAU OAE/SDSS/Niall Deacon

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


Sept bandes avec des zones lumineuses et sombres. La partie la plus brillante du bandeau passe du bleu dans le haut au rouge en bas.

Types spectraux stellaires - bandes

Caption: Les spectres de sept étoiles classés par type spectral, du plus chaud (type O) en haut au plus froid (type M en bas). L'axe des x indique la longueur d'onde de la lumière, tandis que la luminosité ou l'obscurité à chaque longueur d'onde correspond au flux de lumière reçu de l'étoile à cette longueur d'onde, les taches plus sombres ayant un flux plus faible et les taches plus lumineuses un flux plus important. Chaque spectre est normalisé (le flux à chaque longueur d'onde est divisé par le flux maximal pour ce spectre) afin que le flux maximal apparaisse avec la même luminosité pour tous les spectres. La couleur représentée entre 400 nm et 700 nm correspond approximativement à la couleur que l'œil humain verrait pour la lumière de cette longueur d'onde. En dessous de 400 nm et au-dessus de 700 nm, où l'œil humain ne voit que peu ou pas de lumière, les lignes sont colorées respectivement en bleu et en rouge. Les étoiles les plus chaudes ont un flux plus important à l'extrémité bleue du spectre et les étoiles les plus froides ont un flux plus important à l'extrémité rouge. Toutefois, la quantité totale de flux émis par une étoile dépend de sa taille et de sa température. Ainsi, une étoile chaude émettra plus de lumière rouge qu'une étoile froide de même taille, même si l'étoile froide émet presque toute sa lumière dans le rouge, mais cela n'est pas visible sur ce graphique en raison de la normalisation mentionnée ci-dessus. Les taches sombres et étroites dans les spectres sont des lignes d'absorption causées par les atomes et les ions dans l'atmosphère des étoiles. L'intensité d'une raie spectrale dépend de la température de l'atmosphère de l'étoile. Prenons par exemple la raie de l'hydrogène à 656,5 nm. Toutes les étoiles de ce graphique sont principalement composées d'hydrogène, mais la raie de l'hydrogène à 656,5 nm est faible pour les étoiles les plus chaudes et les plus froides, mais plus forte pour les types spectraux A et F. Cela s'explique par le fait que l'hydrogène absorbe plus de lumière à 656,5 nm aux températures de l'atmosphère des étoiles A et F que dans les étoiles les plus chaudes ou les plus froides. L'étoile la plus froide, l'étoile de type M, présente de larges bandes d'absorption dans ses spectres. Cela s'explique par le fait que cette étoile est suffisamment froide pour que son atmosphère contienne des composés tels que l'oxyde de titane. Ces composés, souvent appelés molécules en astronomie, produisent des caractéristiques d'absorption spectrale plus larges que les atomes ou les ions.
Credit: IAU OAE/SDSS/Niall Deacon

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons