Loading...

Glossary term: Right Ascension (RA)

Description: Right ascension is one of two coordinates in the equatorial coordinate system (the other being declination), which astronomers use to define the positions of celestial objects in the sky. As seen from Earth, all the various positions in the sky together form what appears to be a distant sphere with Earth at its center. The points in the sky directly above Earth's equator form the celestial equator on that sphere. The point directly above Earth's geographic North Pole is the celestial North Pole, and that above Earth's South Pole, the celestial South Pole. Just like geographers define geographic longitude and latitude on Earth's surface, one can define longitude and latitude on the celestial sphere. If we were to choose a celestial object's longitude coordinate to be that of the location on Earth directly below, a star's coordinate value would change over time as the Earth turns. Instead, equatorial coordinates measure right ascension as a form of celestial longitude relative to a "meridian" in the sky that does not rotate with Earth, but instead is fixed relative to the fixed stars. That meridian, the analog of the Greenwich meridian on Earth, is defined by where it intersects the celestial equator: At the exact point where the Sun's apparent path crosses the celestial equator from the southern to the northern celestial hemisphere. This longitude is called right ascension. Its value increases towards the east. Look towards the celestial equator, and the longitude values will pass you by in the course of (roughly) 24 hours. That is why right ascension is typically stated as a time value, with 24 hours corresponding to the full 360 degrees. Declination, the second equatorial coordinate, corresponds to geographic latitude. A slight wobble in Earth's rotation axis known as precession makes the equatorial coordinate system, and with it the right ascension and declination of stars and other celestial objects, change over time, but only very slightly and very slowly.

Related Terms:



See this term in other languages

Term and definition status: This term and its definition have been approved by a research astronomer and a teacher

The OAE Multilingual Glossary is a project of the IAU Office of Astronomy for Education (OAE) in collaboration with the IAU Office of Astronomy Outreach (OAO). The terms and definitions were chosen, written and reviewed by a collective effort from the OAE, the OAE Centers and Nodes, the OAE National Astronomy Education Coordinators (NAECs) and other volunteers. You can find a full list of credits here. All glossary terms and their definitions are released under a Creative Commons CC BY-4.0 license and should be credited to "IAU OAE".

Related Diagrams


The bright stars in Andromeda form a Y-shape. Pegasus to the lower right. In the center is M31, marked with a red ellipse.

Andromeda Constellation Map

Caption: The constellation Andromeda showing the bright stars and surrounding constellations. Andromeda is surrounded by (going clockwise from the top) Cassiopeia, Lacerta, Pegasus, Pisces, Aries, Triangulum and Perseus. The brightest star in Andromeda (Alpheratz) is in the lower part of the constellation. Together with three stars in Pegasus it forms the asterism known as the "Great Square of Pegasus". The next two bright stars in the constellation (Mirach and Almach) form a line extending north-east from Alpheratz. Andromeda is a northern constellation and is most visible in the evenings in the Northern Hemisphere autumn. It is visible from all of the Northern Hemisphere and most temperate regions of the Southern Hemisphere but is not visible from Antarctic and Subantarctic regions. The most famous object in Andromeda, the Andromeda Galaxy is marked here with a red ellipse and its Messier catalog number M31. The yellow circle on the left marks the position of the open cluster NGC 752 and the green circle on the right marks NGC 7662 (the blue snowball nebula), a planetary nebula. The y-axis of this diagram is in degrees of declination and with north as up and the x-axis is in hours of right ascension with east to the left. The sizes of the stars marked here relate to the star's apparent magnitude, a measure of its apparent brightness. The larger dots represent brighter stars. The Greek letters mark the brightest stars in the constellation. These are ranked by brightness with the brightest star being labeled alpha, the second brightest beta, etc., although this ordering is not always followed exactly. The dotted boundary lines mark the IAU's boundaries of the constellations and the solid green lines mark one of the common forms used to represent the figures of the constellations. Neither the constellation boundaries, nor the lines joining the stars appear on the sky.
Credit: Adapted by the IAU Office of Astronomy for Education from the original by IAU/Sky & Telescope

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


Orion appears as an hourglass-shaped pattern with two strings of stars extending northeast and northwest

Orion Constellation Map

Caption: The constellation Orion along with its bright stars and surrounding constellations. Orion is surrounded by (going clockwise from the top) Taurus, Eridanus, Lepus, Monoceros and Gemini. Orion’s brightest stars Betelgeuse and Rigel appear at the northern (upper on this diagram) and southern (lower) end of the constellation respectively with the famous three star “belt” in the middle. Orion spans the celestial equator and is thus visible at some time in the year from all of planet Earth. In the most arctic or antarctic regions of the world, some parts of the constellation may not be visible. Orion is most visible in the evenings in the northern hemisphere winter and southern hemisphere summer. The blue line above Orion marks the ecliptic, the path the Sun appears to travel across the sky over the course of a year. The Sun never passes through Orion, but one can occasionally find the other planets of the Solar System and the Moon in Orion. Just south of Orion’s belt lie two Messier objects M42 (the Orion nebula) and M43, marked by green squares. These nebulae along with M78 (here the green square to the left of the belt) are part of the huge Orion Molecular Cloud Complex. This covers most of the constellation and includes regions where these molecular clouds are collapsing to form young starts. The y-axis of this diagram is in degrees of declination and with north as up and the x-axis is in hours of right ascension with east to the left. The sizes of the stars marked here relate to the star's apparent magnitude, a measure of its apparent brightness. The larger dots represent brighter stars. The Greek letters mark the brightest stars in the constellation. These are ranked by brightness with the brightest star being labeled alpha, the second brightest beta, etc., although this ordering is not always followed exactly. The circle around Betelgeuse indicates that it is a variable star. The dotted boundary lines mark the IAU's boundaries of the constellations and the solid green lines mark one of the common forms used to represent the figures of the constellations. Neither the constellation boundaries, nor the lines joining the stars appear on the sky.
Credit: Adapted by the IAU Office of Astronomy for Education from the original by IAU/Sky & Telescope

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons


Pisces appears as a SW-pointing v-shape with loops at the end of each line. The ecliptic runs WSW to ENE through Pisces.

Pisces Constellation Map

Caption: The constellation Pisces along with its bright stars and surrounding constellations. Pisces is surrounded by (going clockwise from the top) Andromeda, Pegasus, Aquarius, Cetus, Aries and Triangulum. Pisces lies on the ecliptic (shown here as a blue line), this is the path the Sun appears to take across the sky over the course of a year. The Sun is in Pisces from mid March to mid April. Thus the Sun is in Pisces at the March equinox. At this point the ecliptic crosses the celestial equator. The Sun’s location at the spring equinox is used to set the zero point of the Right Ascension positional coordinate. The other planets of the Solar System can often be found in Pisces. Pisces spans the celestial equator and is thus visible at some time in the year from all of planet Earth. In the most arctic or antarctic regions of the world, some parts of the constellation may not be visible. Pisces is most visible in the evenings in the northern hemisphere autumn and southern hemisphere spring The grand design spiral galaxy M74 is marked on this diagram with a small red circle. The y-axis of this diagram is in degrees of declination and with north as up and the x-axis is in hours of right ascension with east to the left. The sizes of the stars marked here relate to the star's apparent magnitude, a measure of its apparent brightness. The larger dots represent brighter stars. The Greek letters mark the brightest stars in the constellation. These are ranked by brightness with the brightest star being labeled alpha, the second brightest beta, etc., although this ordering is not always followed exactly. The dotted boundary lines mark the IAU's boundaries of the constellations and the solid green lines mark one of the common forms used to represent the figures of the constellations. Neither the constellation boundaries, nor the lines joining the stars appear on the sky.
Credit: Adapted by the IAU Office of Astronomy for Education from the original by IAU/Sky & Telescope

License: CC-BY-4.0 Creative Commons Attribution 4.0 International (CC BY 4.0) icons